Analisis Kapasitas Produksi Menggunakan Metode Rough Cut Capacity Planning Pada CV Tahaki Multi Kreasi
DOI:
https://doi.org/10.52072/arti.v19i2.1028Keywords:
Production Capacity, Forecasting, Production Schedule, Rough Cut Capacity PlanningAbstract
CV Tahaki Multi Kreasi is a company engaged in interior, exterior and advertising. The number of requests for cabinet room products tends to fluctuate every month. In 2023, from January to December, CV Tahaki Multi Kreasi received 143 cabinet room order projects. To estimate the amount of demand, effective forecasting is needed. Forecasting uses methods namely Moving Average, Exponential Smoothing, and Trend Analysis. The most effective forecasting uses the Trend Analysis method which has the smallest forecasting error. The MAD value is 1.9005, MSE is 4.5343, and MAPE is 19.2362. The production schedule at CV Tahaki Multi Kreasi is carried out every two weeks for optimal results. Production capacity requirements are calculated using the Rough Cut Capacity Planning (RCCP) method. The RCCP method is used to determine the possibility of insufficient capacity or overload in determining production capacity.. The total capacity required in all work centers is 962 hours, while the total available capacity is 2016 hours. The analysis shows that there is no capacity shortage at each work station because the variance shows negative and the load percentage is 54.2%.
Downloads
References
Aisyah, S., Hardi Purba, H., & Dewarani, R. F. (2020). Production capacity planning using RCCP method with CPOF approach: A case study in an automotive Industry. IOP Conference Series: Materials Science and Engineering, 885(1). https://doi.org/10.1088/1757-899X/885/1/012028
Assaabiq, M., & Diah Yuniawati, R. (2022). Analisa Penjadwalan Produksi Emergency Air Reciever dengan Menggunakan Master Production Schedule di PT. Boma Bisma Indra. Jurnal Jaring SainTek, 4(1), 43–48. http://ejurnal.ubharajaya.ac.id/index.php/jaring-saintek43
Iksan, I. (2018) ‘Analisa Perencanaan Kapasitas Produksi Pada Pt. Muncul Abadi Dengan Metode Rough Cut Capacity Planning’, MATRIK (Jurnal Manajemen dan Teknik), 8(2), p. 91. doi: 10.30587/matrik.v8i2.375.
Liliyen, D., Hernawati, T., Harahap, B., Alumni, ), Prodi, D., Industri, T., Uisu, F. T., Raja, J. S. M., & Teladan, M. (n.d.). PERENCANAAN KAPASITAS PRODUKSI TEH HITAM MENGGUNAKAN METODE ROUGH CUT CAPACITY PLANNING DI PT. PERKEBUNAN NUSANTARA IV UNIT KEBUN TOBASARI. In Cetak) Buletin Utama Teknik (Vol. 15, Issue 3). Online.
Mahardika, A. D. and Susanto, N. (2017) ‘Peramalan Perencanaan Produksi Terak Dengan Metode Exponential Smoothing With Trend Pada Pt. Semen Indonesia (Persero) Tbk’, Industrial Engineering Online Journal, 6(1), pp. 1–10.
Mutmainah, N. H. (2022). PERENCANAAN KAPASITAS PERCETAKAN ETHICA GROUP MENGGUNAKAN METODE ROUGH CUT CAPACITY PLANNING. Jurnal REKAVASI, 10(1), 1–8.
Rapi, A., Muthalib, I. S., & Asmal, S. (2020). Implementation of the Rought Cut Capacity Planning (RCCP) Methods for the Planning of Bottled Drinking Water Production Capacity: A study case. IOP Conference Series: Materials Science and Engineering, 885(1). https://doi.org/10.1088/1757-899X/885/1/012052
Shurrab, H., Jonsson, P., & Johansson, M. I. (2022). A tactical demand-supply planning framework to manage complexity in engineer-to-order environments: insights from an in-depth case study. Production Planning and Control, 33(5), 462–479. https://doi.org/10.1080/09537287.2020.1829147
Sugarindra, M., & Nurdiansyah, R. (2020). Production Capacity Optimization with Rough Cut Capacity Planning (RCCP). IOP Conference Series: Materials Science and Engineering, 722(1). https://doi.org/10.1088/1757-899X/722/1/012046
Suwarso, R. H., Salmia, S. T., Priyasmanu, T., Program, ), & Industri, S. T. (2021). PERENCANAAN KAPASITAS PRODUKSI MENGGUNAKAN METODE ROUGH CUT CAPACITY PLANNING (RCCP) PADA HOME INDUSTRI LOCA NUSA. Jurnal Mahasiswa Teknik Industri, 4(1).
Syahda, A. et al. (2020) ‘Perencanaan Kebutuhan Kapasitas Rough-Cut Capacity Planning (RCCP) Pada Produksi Ragum’, … Series: Energy and …, 3(2), pp. 52–60. doi: 10.32734/ee.v3i2.973.